Higher-dimensional integrable systems from multilinear evolution equations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1996 J. Phys. A: Math. Gen. 29 L381
(http://iopscience.iop.org/0305-4470/29/15/003)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.70
The article was downloaded on 02/06/2010 at 03:56

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Higher-dimensional integrable systems from multilinear evolution equations

Jens Hoppe \dagger
Institut für Theoretische Physik, ETH Hönggerberg, CH 8093 Zürich, Switzerland

Received 23 May 1996

Abstract

A multilinear M-dimensional generalization of Lax pairs is introduced and its explicit form is given for the recently discovered class of time-harmonic, integrable, hypersurface motions in \mathbb{R}^{M+1}.

In [1] the explicit form of a triple $\left(L, M_{1}, M_{2}\right)$, depending on two spectral parameters and four time-dependent functions $x_{i}\left(t, \varphi^{1}, \varphi^{2}, \varphi^{3}\right)$ from a three-dimensional Riemannian manifold Σ to \mathbb{R} was given such that (with ρ a non-dynamical density on Σ)

$$
\begin{equation*}
\dot{L}=\frac{1}{\rho} \varepsilon_{r s u} \frac{\partial L}{\partial \varphi^{u}} \frac{\partial M_{1}}{\partial \varphi^{r}} \frac{\partial M_{2}}{\partial \varphi^{s}} \tag{1}
\end{equation*}
$$

is equivalent to the equations

$$
\begin{equation*}
\dot{x}_{i}=\frac{1}{\rho} \frac{\varepsilon_{i i_{1} i_{2} i_{3}} \varepsilon_{r_{1} r_{2} r_{3}}}{3!} \partial_{r_{1}} x_{i_{1}} \partial_{r_{2}} x_{i_{2}} \partial_{r_{3}} x_{i_{3}} \tag{2}
\end{equation*}
$$

describing the integrable motion of a hypersurface $\hat{\Sigma}$ in \mathbb{R}^{4} whose time-function (the time at which $\hat{\Sigma}$ reaches a point $\boldsymbol{x} \in \mathbb{R}^{4}$) is harmonic [2].

The purpose of this letter is to give the explicit generalization of this construction to an arbitrary number of dimensions, $M(=\operatorname{dim} \Sigma)$. Let

$$
\begin{equation*}
z_{1}=x_{1}+\mathrm{i} x_{2} \quad z_{2}=x_{3}+\mathrm{i} x_{4} \quad \ldots \tag{3}
\end{equation*}
$$

For even $M(=2 m)$ one may take

$$
\begin{align*}
& L=\sum_{a=1}^{m}\left(\lambda_{a} z_{a}-\frac{\bar{z}_{a}}{\lambda_{a}}\right)+2 \sqrt{m} x_{N} \\
& M_{a}=\frac{i}{2}\left(\lambda_{a} z_{a}+\frac{x_{N}}{\sqrt{m}}\right) \cdot 2^{1 / m} \quad a=1, \ldots, m \tag{4}\\
& M_{m+a^{\prime}}=\left(\frac{1}{\sqrt{m}}\right)^{1 /(m-1)}\left(\frac{\bar{z}_{m+1-a^{\prime}}}{\lambda_{m+1-a^{\prime}}}-\frac{\bar{z}_{m-a^{\prime}}}{\lambda_{m-a^{\prime}}}\right) \quad a^{\prime}=1, \ldots, m-1
\end{align*}
$$

depending on m spectral parameters, λ_{a}, and $N=M+1$ functions $x_{i}\left(t, \varphi^{1}, \ldots, \varphi^{M}\right)$; letting

$$
\begin{align*}
& \left\{f_{1}, \ldots, f_{M}\right\}:=\frac{1}{\rho\left(\varphi^{1}, \ldots, \varphi^{M}\right)} \varepsilon_{r_{1} \ldots r_{M}} \partial_{r_{1}} f_{1} \ldots \partial_{r_{M}} f_{M} \tag{5}\\
& \dot{L}=\left\{L, M_{1}, M_{2}, \ldots, M_{2 m-1}\right\} \tag{6}
\end{align*}
$$

\dagger Heisenberg Fellow. On leave of absence from Karlsruhe University.
will then be equivalent to the equations of motion (as above, \bar{z}_{a} denoting the complex conjugate of z_{a})

$$
\begin{align*}
& \dot{z}_{a}=-\mathrm{i}\left(\frac{\mathrm{i}}{2}\right)^{m-1}\left\{z_{a}, z_{a+1}, \bar{z}_{a+1}, \ldots, z_{a-1}, \bar{z}_{a-1}, x_{N}\right\} \tag{7}\\
& \dot{x}_{N}=\left(\frac{\mathrm{i}}{2}\right)^{m}\left\{z_{1}, \bar{z}_{1}, \ldots, z_{m}, \bar{z}_{m}\right\} .
\end{align*}
$$

For odd $M(=2 m+1)$, rather than giving a particular form of $L, M_{1}, \ldots, M_{2 m}$ that would make

$$
\begin{equation*}
\dot{L}=\left\{L, M_{1}, \ldots, M_{2 m}\right\} \tag{8}
\end{equation*}
$$

equivalent to the equations of motion
$\dot{z}_{\alpha}=-\mathrm{i}\left(\frac{\mathrm{i}}{2}\right)^{n-1}\left\{z_{\alpha}, z_{\alpha+1}, \bar{z}_{\alpha+1}, \ldots, z_{\alpha-1}, \bar{z}_{\alpha-1}\right\} \quad \alpha=1, \ldots, n=m+1$
let me in this case stress the simple general nature of the construction: think of

$$
\begin{equation*}
L=L_{1} \lambda_{1} z_{1}+L_{2} \frac{\bar{z}_{1}}{\lambda_{1}}+\cdots+L_{N-1} \lambda_{n} z_{n}+L_{N} \frac{\bar{z}_{n}}{\lambda_{n}} \tag{10}
\end{equation*}
$$

and likewise $M_{1}, \ldots, M_{2 m}$, as $N=2 n$-dimensional vectors $L, M_{1}, \ldots, M_{2 m}$ in a vector space V with basis $\lambda_{1} z_{1}, \ldots, \bar{z}_{n} / \lambda_{n}$. The desired equivalence of (8) with (9) may then be stated as the requirement that

$$
\begin{equation*}
\operatorname{det}\left(\boldsymbol{L}, \boldsymbol{M}_{1} \boldsymbol{M}_{2} \ldots \boldsymbol{M}_{2 m} \boldsymbol{e}_{j}\right)=-\mathrm{i}\left(\frac{\mathrm{i}}{2}\right)^{n-1} \hat{\boldsymbol{L}} \cdot \boldsymbol{e}_{j} \tag{11}
\end{equation*}
$$

where $e_{j}=(0 \cdots 010 \cdots 0)^{\text {tr }}$ and

$$
\begin{equation*}
\hat{\boldsymbol{L}}=\left(L_{2}, L_{1}, L_{4}, L_{3}, \ldots, L_{N}, L_{N-1}\right) \tag{12}
\end{equation*}
$$

Multiplying (11) with the j th component of L (or any of the M 's), and summing over j, one finds that all $2 m+1$ vectors $\boldsymbol{L}, \boldsymbol{M}_{1}, \ldots, \boldsymbol{M}_{2 m}$ have to be perpendicular to $\hat{\boldsymbol{L}}$; in particular

$$
\begin{equation*}
\hat{\boldsymbol{L}} \cdot \boldsymbol{L}=2\left(L_{1} L_{2}+\ldots+L_{N-1} L_{N}\right)=0 \tag{13}
\end{equation*}
$$

Choosing $\boldsymbol{M}_{1}, \ldots, \boldsymbol{M}_{2 m}$ to be also perpendicular to \boldsymbol{L}, the only remaining condition, obtained by multiplying (11) by \hat{L}_{j} (and summing), becomes (\sim denoting the projection onto the $2 n-2=2 m$-dimensional orthogonal complement of the $\boldsymbol{L}, \hat{\boldsymbol{L}}$-plane)

$$
\begin{equation*}
\operatorname{det}\left(\tilde{\boldsymbol{M}}_{1}, \ldots, \tilde{\boldsymbol{M}}_{2 m}\right)=-\mathrm{i}\left(\frac{\mathrm{i}}{2}\right)^{n-1} \tag{14}
\end{equation*}
$$

which exhibits the large freedom in choosing the \boldsymbol{M} 's (for fixed L). Similar reasoning applies directly to the real equations (cp [2])

$$
\begin{equation*}
\dot{x}_{i}=\frac{1}{M!} \varepsilon_{i i_{1} \ldots i_{M}}\left\{x_{i_{1}}, \ldots, x_{i_{M}}\right\} \tag{15}
\end{equation*}
$$

the ansatz $L=\sum_{i=1}^{N} \mathbb{L}_{i} x_{i}, M_{1}=\sum \mathbb{M}_{1 i} x_{i}, \ldots$ immediately implies

$$
\begin{equation*}
\sum_{i=1}^{N} \mathbb{L}_{i}^{2}=0 \tag{16}
\end{equation*}
$$

making $L^{l}, l \in \mathbb{N}$, a harmonic polynomial of x_{1}, \ldots, x_{N} (while its integral is timeindependent, due to (6) and (8)), irrespective of whether M is odd or even.

References

[1] Hoppe J 1995 On M-Algebras, the quantization of Nambu mechanics, and volume preserving diffeomorphisms Preprint ETH-TH/95-33
[2] Bordemann M and Hoppe J 1995 Diffeomorphism invariant integrable field theories and hypersurface motions in Riemannian manifolds Preprint ETH-TH/95-31, FR-THEP-95-26

