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LETTER TO THE EDITOR

Higher-dimensional integrable systems from multilinear
evolution equations

Jens Hoppe†
Institut für Theoretische Physik, ETH Ḧonggerberg, CH 8093 Z̈urich, Switzerland

Received 23 May 1996

Abstract. A multilinear M-dimensional generalization of Lax pairs is introduced and its
explicit form is given for the recently discovered class of time-harmonic, integrable, hypersurface
motions inRM+1.

In [1] the explicit form of a triple(L, M1, M2), depending on two spectral parameters
and four time-dependent functionsxi(t, ϕ

1, ϕ2, ϕ3) from a three-dimensional Riemannian
manifold 6 to R was given such that (withρ a non-dynamical density on6)

L̇ = 1

ρ
εrsu

∂L

∂ϕu

∂M1

∂ϕr

∂M2

∂ϕs
(1)

is equivalent to the equations

ẋi = 1

ρ

εii1i2i3εr1r2r3

3!
∂r1xi1∂r2xi2∂r3xi3 (2)

describing the integrable motion of a hypersurface6̂ in R4 whose time-function (the time
at which6̂ reaches a pointx ∈ R4) is harmonic [2].

The purpose of this letter is to give the explicit generalization of this construction to an
arbitrary number of dimensions,M(= dim6). Let

z1 = x1 + ix2 z2 = x3 + ix4 . . . . (3)

For evenM (= 2m) one may take

L =
m∑

a=1

(
λaza − z̄a

λa

)
+ 2

√
m xN

Ma = i

2

(
λaza + xN√

m

)
· 21/m a = 1, . . . , m

Mm+a′ =
(

1√
m

)1/(m−1) (
z̄m+1−a′

λm+1−a′
− z̄m−a′

λm−a′

)
a′ = 1, . . . , m − 1

(4)

depending onm spectral parameters,λa, andN = M+1 functionsxi(t, ϕ
1, . . . , ϕM); letting

{f1, . . . , fM} := 1

ρ(ϕ1, . . . , ϕM)
εr1...rM

∂r1f1 . . . ∂rM
fM (5)

L̇ = {L, M1, M2, . . . , M2m−1} (6)
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will then be equivalent to the equations of motion (as above,z̄a denoting the complex
conjugate ofza)

ża = −i

(
i

2

)m−1

{za, za+1, z̄a+1, . . . , za−1, z̄a−1, xN }

ẋN =
(

i

2

)m

{z1, z̄1, . . . , zm, z̄m} .

(7)

For odd M (= 2m + 1), rather than giving a particular form ofL, M1, . . . , M2m that
would make

L̇ = {L, M1, . . . , M2m} (8)

equivalent to the equations of motion

żα = −i

(
i

2

)n−1

{zα, zα+1, z̄α+1, . . . , zα−1, z̄α−1} α = 1, . . . , n = m + 1 (9)

let me in this case stress the simple general nature of the construction: think of

L = L1λ1z1 + L2
z̄1

λ1
+ · · · + LN−1λnzn + LN

z̄n

λn

(10)

and likewiseM1, . . . , M2m, asN = 2n-dimensional vectorsL, M1, . . . ,M2m in a vector
spaceV with basisλ1z1, . . . , z̄n/λn. The desired equivalence of (8) with (9) may then be
stated as the requirement that

det
(
L, M1M2 . . .M2mej

) = −i

(
i

2

)n−1

L̂ · ej (11)

whereej = (0 · · · 010· · · 0)tr and

L̂ = (L2, L1, L4, L3, . . . , LN, LN−1) . (12)

Multiplying (11) with the j th component ofL (or any of theM ’s), and summing over
j , one finds that all 2m + 1 vectorsL, M1, . . . ,M2m have to be perpendicular tôL; in
particular

L̂ · L = 2(L1L2 + . . . + LN−1LN) = 0 . (13)

ChoosingM1, . . . ,M2m to be also perpendicular toL, the only remaining condition,
obtained by multiplying (11) byL̂j (and summing), becomes (∼ denoting the projection
onto the 2n − 2 = 2m-dimensional orthogonal complement of theL, L̂-plane)

det
(
M̃1, . . . ,M̃2m

)
= −i

(
i

2

)n−1

(14)

which exhibits the large freedom in choosing theM ’s (for fixed L). Similar reasoning
applies directly to the real equations (cp [2])

ẋi = 1

M!
εii1...iM {xi1, . . . , xiM } (15)

the ansatzL = ∑N
i=1 Lixi, M1 = ∑

M1ixi, . . . immediately implies

N∑
i=1

L2
i = 0 (16)

making Ll, l ∈ N, a harmonic polynomial ofx1, . . . , xN (while its integral is time-
independent, due to (6) and (8)), irrespective of whetherM is odd or even.
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